Irinol

Irinol Mechanism of Action

irinotecan

Manufacturer:

Venus Remedies

Distributor:

Unimed
Full Prescribing Info
Action
Cytostatic topoisomerase I inhibitor. ATC Code: L01XX19.
Pharmacology: Pharmacodynamics: Irinotecan is a semi-synthetic derivative of camptothecin. It is an antineoplastic agent which acts as a specific inhibitor of DNA topoisomerase I. It is metabolised by carboxylesterase in most tissues to SN-38, which was found to be more active than irinotecan in purified topoisomerase I and more cytotoxic than irinotecan against several murine and human tumour cell lines. The inhibition of DNA topoisomerase I by irinotecan or SN-38 induces single-strand DNA lesions which blocks the DNA replication fork and are responsible for the cytotoxicity. This cytotoxic activity was found time-dependent and was specific to the S phase.
In vitro, irinotecan and SN-38 were not found to be significantly recognised by the P-glycoprotein MDR, and displays cytotoxic activities against doxorubicin and vinblastine resistant cell lines.
Furthermore, irinotecan has a broad antitumor activity in vivo against murine tumour models (P03 pancreatic ductal adenocarcinoma, MA16/C mammary adenocarcinoma, C38 and C51 colon adenocarcinomas) and against human xenografts (Co-4 colon adenocarcinoma, Mx-1 mammary adenocarcinoma, ST-15 and SC-16 gastric adenocarcinomas). Irinotecan is also active against tumors expressing the P-glycoprotein MDR (vincristine- and doxorubicin-resistant P388 leukaemia's).
Beside the antitumor activity of irinotecan, the most relevant pharmacological effect of irinotecan is the inhibition of acetylcholinesterase.
In combination therapy for the first-line treatment of metastatic colorectal carcinoma: In combination therapy with Folinic Acid and 5-Fluorouracil: In the every 2 weeks schedule, on day 1, the administration of IRINOL at 180 mg/m2 once every 2 weeks is followed by infusion with folinic acid (200 mg/m2 over a 2-hour intravenous infusion) and 5-fluorouracil (400 mg/m2 as an intravenous bolus, followed by 600 mg/m2 over a 22-hour intravenous infusion).
On day 2, folinic acid and 5-fluorouracil are administered at the same doses and schedules. In the weekly schedule, the administration of IRINOL at 80 mg/m2 is followed by infusion with folinic acid (500 mg/m2 over a 2-hour intravenous infusion) and then by 5-fluorouracil (2300 mg/m2 over a 24-hour intravenous infusion) over 6 weeks.
In the weekly schedule, the incidence of severe diarrhoea in patients treated by IRINOL in combination with 5FU/FA and in patients treated by 5FU/FA alone. The incidence of severe neutropenia (neutrophil count < 500 cells/mm3) was in patients treated by IRINOL in combination with 5FU/FA and in patients treated by 5FU/FA alone.
In combination therapy with bevazicumab: Bevacizumab used in combination with IRINOL/5FU/FA as first-line treatment for metastatic carcinoma of the colon or rectum. The addition of bevacizumab to the combination of IRINOL/5FU/FA resulted in a statistically significant increase in overall survival. The clinical benefit, as measured by overall survival, was seen in all patient subgroups, including those defined by age, sex, and performance status, location of primary tumour, number of organs involved, and duration of metastatic disease.
In combination therapy with capecitabine: The support the use of capecitabine at a starting dose of 1000 mg/m2 for 2 weeks every 3 weeks in combination with irinotecan for the first-line treatment of patients with metastatic colorectal cancer.
Sequential treatment consisted of first-line treatment with capecitabine (1250 mg/m2 twice daily for 14 days), second-line irinotecan (350 mg/m2 on day 1), and third-line combination of capecitabine (1000 mg/m2 twice daily for 14 days) with oxaliplatin (130 mg/m2 on day 1).
Combination treatment consisted of first-line treatment of capecitabine (1000 mg/m2 twice daily for 14 days) combined with irinotecan (250 mg /m2 on day 1) and second-line capecitabine (1000 mg/m2 twice daily for 14 days) plus oxaliplatin (130 mg/m2 on day 1). All treatment cycles were administered at intervals of 3 weeks. In first-line treatment the median progression-free survival in the intent-to-treat population was 5.8 months for capecitabine monotherapy and 7.8 months for irinotecan.
The intensity of the major toxicities encountered with IRINOL (e.g., leukoneutropenia and diarrhoea) are related to the exposure (AUC) to parent drug and metabolite SN-38. Significant correlations were observed between haematological toxicity (decrease in white blood cells and neutrophils at nadir) or diarrhoea intensity and both irinotecan and metabolite SN-38 AUC values in monotherapy.
Patients with Reduced UGT1A1 Activity: Uridine diphosphate-glucuronosyl transferase 1A1 (UGT1A1) is involved in the metabolic deactivation of SN-38, the active metabolite of irinotecan to inactive SN-38 glucuronide (SN-38G). The UGT1A1 gene is highly polymorphic, resulting in variable metabolic capacities among individuals. One specific variation of the UGT1A1 gene includes a polymorphism in the promoter region known as the UGT1A1*28 variant. This variant and other congenital deficiencies in UGT1A1 expression (such as Crigler-Najjar and Gilbert's syndrome) are associated with reduced activity of this enzyme. Data from a meta-analysis indicate that individuals with Crigler-Najjar syndrome (types 1 and 2) or those who are homozygous for the UGT1A1*28 allele (Gilbert's syndrome) are at increased risk of haematological toxicity (grades 3 and 4) following administration of irinotecan at moderate or high doses (>150 mg/m2). A relationship between UGT1A1 genotype and the occurrence of irinotecan induced diarrhea was not established.
Patients known to be homozygous for UGT1A1*28 should be administered the normally indicated irinotecan starting dose. However, these patients should be monitored for haematologic toxicities. A reduced irinotecan starting dose should be considered for patients who have experienced prior haematologic toxicity with previous treatment. The exact reduction in starting dose in this patient population has not been established and any subsequent dose modifications should be based on a patient's tolerance of the treatment. There is at present insufficient data to conclude on clinical utility of UGT1A1 genotyping.
Pharmacokinetics: Absorption: At the end of the infusion, at the recommended dose of 350 mg/m2, the mean peak plasma concentrations of irinotecan and SN-38 were 7.7 μg/ml and 56 ng/ml, respectively, and the mean area under the curve (AUC) values were 34 μg.h/ml and 451 ng.h/ml, respectively. A large interindividual variability in pharmacokinetic parameters is generally observed for SN-38.
Distribution: In vitro, plasma protein binding for irinotecan and SN-38 was approximately 65% and 95% respectively.
Biotransformation: Mass balance and metabolism studies with 14 C-labelled drug have shown that more than 50% of an intravenously administered dose of irinotecan is excreted as unchanged drug, with 33% in the faeces mainly via the bile and 22% in urine.
Two metabolic pathways account each for at least 12% of the dose: Hydrolysis by carboxylesterase into active metabolite SN-38, SN-38 is mainly eliminated by glucuronidation, and further by biliary and renal excretion (less than 0.5% of the irinotecan dose). The SN-38 glucuronite is subsequently probably hydrolysed in the intestine.
Cytochrome P450 3A enzymes-dependent oxidations resulting in opening of the outer piperidine ring with formation of APC (aminopentanoic acid derivate) and NPC (primary amine derivate).
Unchanged irinotecan is the major entity in plasma, followed by APC, SN-38 glucuronide and SN-38. Only SN-38 has significant cytotoxic activity.
Elimination: Irinotecan showed a biphasic or thriphasic elimination profile. The mean plasma clearance was 15 L/h/m2 and the volume of distribution at steady state (Vss): 157 L/m2. The mean plasma half-life of the first phase of the triphasic model was 12 minutes, of the second phase 2.5 hours, and the terminal phase half-life was 14.2 hours. SN-38 showed a biphasic elimination profile with a mean terminal elimination half-life of 13.8 hours.
Irinotecan clearance is decreased by about 40% in patients with bilirubinemia between 1.5 and 3 times the upper normal limit. In these patients a 200 mg/m2 irinotecan dose leads to plasma drug exposure comparable to that observed at 350 mg/m2 in cancer patients with normal liver parameters.
Linearity/non-linearity: A population pharmacokinetic analysis of irinotecan has been performed in patients with metastatic colorectal cancer, treated with various schedules and at different doses. All studies have shown that irinotecan (CPT-11) and SN-38 exposure increase proportionally with CPT-11 administered dose; their pharmacokinetics are independent of the number of previous cycles and of the administration schedule.
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in