Qutero

Qutero Mechanism of Action

quetiapine

Manufacturer:

Hetero Labs

Distributor:

Unimed
Full Prescribing Info
Action
Pharmacology: Pharmacodynamics: Mechanism of action: Quetiapine is an atypical antipsychotic agent. Quetiapine and the active human plasma metabolite, norquetiapine interact with a broad range of neurotransmitter receptors. Quetiapine and norquetiapine exhibit affinity for brain serotonin (5HT2) and dopamine D1- and D2- receptors. It is this combination of receptor antagonism with a higher selectivity for 5HT2 relative to D2- receptors, which is believed to contribute to the clinical antipsychotic properties and low extrapyramidal side effect (EPS) liability of quetiapine. Additionally, norquetiapine has high affinity for the norepinephrine transporter (NET). Quetiapine and norquetiapine also have high affinity at histaminergic and adrenergic α1 receptors, with a lower affinity at adrenergic α2 and serotonin 5HT1A receptors. Quetiapine has no appreciable affinity at cholinergic muscarinic or benzodiazepine receptors.
Pharmacodynamic effects: Quetiapine is active in tests for antipsychotic activity, such as conditioned avoidance. It also blocks the action of dopamine agonists, measured either behaviorally or electrophysiologically, and elevates dopamine metabolite concentrations, a neurochemical index of D2-receptor blockade.
Pharmacokinetics: Adults: Quetiapine fumarate activity is primarily due to the parent drug. The multiple-dose pharmacokinetics of quetiapine are dose-proportional within the proposed clinical dose range, and quetiapine accumulation is predictable upon multiple dosing. Elimination of quetiapine is mainly via hepatic metabolism with a mean terminal half-life of about 6 hours within the proposed clinical dose range. Steady-state concentrations are expected to be achieved within two days of dosing. Quetiapine is unlikely to interfere with the metabolism of drugs metabolized by cytochrome P450 enzymes.
Children and Adolescents: At steady-state the pharmacokinetics of the parent compound, in children and adolescents (10-17 years of age), were similar to adults. However, when adjusted for dose and weight, AUC and Cmax of the parent compound were 41% and 39% lower, respectively, in children and adolescents than in adults. For the active metabolite, norquetiapine, AUC and Cmax were 45% and 31% higher, respectively, in children and adolescents than in adults. When adjusted for dose and weight, the pharmacokinetics of the metabolite, norquetiapine, was similar between children and adolescents and adults.
Quetiapine is well absorbed and extensively metabolised following oral administration.
The bioavailability of quetiapine is not significantly affected by administration with food. Quetiapine is approximately 83% bound to plasma proteins. Steady-state peak molar concentrations of the active metabolite norquetiapine are 35% of that observed for quetiapine. The elimination half-lives of quetiapine and norquetiapine are approximately 7 and 12 hours, respectively.
The pharmacokinetics of quetiapine and norquetiapine are linear across the approved dosing range. The kinetics of quetiapine do not differ between men and women. The mean clearance of quetiapine in the elderly is approximately 30 to 50% lower than that seen in adults aged 18 to 65 years.
The mean plasma clearance of quetiapine was reduced by approximately 25% in subjects with severe renal impairment (creatinine clearance less than 30 ml/min/1.73m2) but the individual clearance values are within the range for normal subjects. The average molar dose fraction of free quetiapine and the active human plasma metabolite norquetiapine is <5% excreted in the urine.
Quetiapine is extensively metabolised by the liver, with parent compound accounting for less than 5% of unchanged drug-related material in the urine or faeces, following the administration of radiolabelled quetiapine. Approximately 73% of the radioactivity is excreted in the urine and 21% in the faeces.
The mean quetiapine plasma clearance decreases with approx. 25% in persons with known hepatic impairment (stable alcohol cirrhosis). As quetiapine is extensively metabolised by the liver, elevated plasma levels are expected in the population with hepatic impairment. Dose adjustments may be necessary in these patients.
In vitro investigations established that CYP3A4 is the primary enzyme responsible for cytochrome P450 mediated metabolism of quetiapine. Norquetiapine is primarily formed and eliminated via CYP3A4.
Quetiapine and several of its metabolites (including norquetiapine) were found to be weak inhibitors of human cytochrome P450 1A2, 2C9, 2C19, 2D6 and 3A4 activities in vitro. In vitro CYP inhibition is observed only at concentrations approximately 5 to 50-fold higher than those observed at a dose range of 300 to 800 mg/day in humans. Based on these in vitro results, it is unlikely that co-administration of quetiapine with other drugs will result in clinically significant drug inhibition of cytochrome P450 mediated metabolism of the other drug. From animal studies it appears that quetiapine can induce cytochrome P450 enzymes. In a specific interaction study in psychotic patients, however, no increase in the cytochrome P450 activity was found after administration of quetiapine.
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in