Keppra

Keppra Mechanism of Action

levetiracetam

Manufacturer:

GlaxoSmithKline Indonesia
Full Prescribing Info
Action
Pharmacotherapeutic group: Antiepileptics; other antiepileptics. ATC Code: N03AX14.
Pharmacology:
Pharmacodynamics: Mechanism of Action: The active substance, levetiracetam, is a pyrrolidone derivative (S-enantiomer of α-ethyl-2-oxo-1-pyrrolidine acetamide), chemically unrelated to existing antiepileptic active substances.
The mechanism of action of levetiracetam still remains to be fully elucidated.
In vitro and in vivo experiments suggest that levetiracetam does not alter basic cell characteristics and normal neurotransmission.
In vitro studies show that levetiracetam affects intraneuronal Ca2+ levels by partial inhibition of N-type Ca2+ currents and by reducing the release of Ca2+ from intraneuronal stores. In addition, it partially reverses the reductions in GABA- and glycine-gated currents induced by zinc and β-carbolines. Furthermore, levetiracetam has been shown in in vitro studies to bind to a specific site in rodent brain tissue. This binding site is the synaptic vesicle protein 2A, believed to be involved in vesicle fusion and neurotransmitter exocytosis. Levetiracetam and related analogs show a rank order of affinity for binding to the synaptic vesicle protein 2A which correlates with the potency of their antiseizure protection in the mouse audiogenic model of epilepsy. This finding suggests that the interaction between levetiracetam and the synaptic vesicle protein 2A seems to contribute to the antiepileptic mechanism of action of the medicinal product.
Pharmacodynamic Effects: Levetiracetam induces seizure protection in a broad range of animal models of partial and primarily generalised seizures without having a pro-convulsant effect. The primary metabolite is inactive.
In man, activity in both partial and generalised epilepsy conditions (epileptiform discharge/photoparoxysmal response) has confirmed the broad spectrum pharmacological profile of levetiracetam.
Clinical Studies: Not relevant for this product.
Pharmacokinetics: Levetiracetam is a highly soluble and permeable compound. The pharmacokinetic profile is linear with low intra- and inter-subject variability. There is no modification of the clearance after repeated administration.
There is no evidence for any relevant gender, race or circadian variability. The pharmacokinetic profile is comparable in healthy volunteers and in patients with epilepsy.
Due to its complete and linear absorption, plasma levels can be predicted from the oral dose of levetiracetam expressed as mg/kg bodyweight. Therefore, there is no need for plasma level monitoring of levetiracetam.
A significant correlation between saliva and plasma concentrations has been shown in adults and children (ratio of saliva/plasma concentrations ranged from 1 to 1.7 for oral tablet formulation and after 4 hours post-dose for oral solution formulation).
The pharmacokinetic profile has been characterised following oral administration. A single dose of 1,500 mg levetiracetam diluted in 100 mL of a compatible diluent and infused intravenously over 15 minutes is bioequivalent to 1,500 mg levetiracetam oral intake, given as three 500 mg tablets.
Absorption: Levetiracetam is rapidly absorbed after oral administration. Oral absolute bioavailability is close to 100%.
Peak plasma concentrations (Cmax) are achieved at 1.3 hours after dosing. Steady-state is achieved after two days of a twice daily administration schedule.
Peak concentrations (Cmax) are typically 31 and 43 μg/mL following a single 1,000 mg dose and repeated 1,000 mg twice daily dose, respectively.
The extent of absorption is dose-independent and is not altered by food.
Distribution: No tissue distribution data are available in humans.
Neither levetiracetam nor its primary metabolite are significantly bound to plasma proteins (<10%). The volume of distribution of levetiracetam is approximately 0.5 to 0.7 L/kg, a value close to the total body water volume.
Metabolism: Levetiracetam is not extensively metabolised in humans. The major metabolic pathway (24% of the dose) is an enzymatic hydrolysis of the acetamide group. Production of the primary metabolite, ucb L057, is not supported by liver cytochrome P450 isoforms. Hydrolysis of the acetamide group was measurable in a large number of tissues including blood cells. The metabolite ucb L057 is pharmacologically inactive.
Two minor metabolites were also identified. One was obtained by hydroxylation of the pyrrolidone ring (1.6% of the dose) and the other one by opening of the pyrrolidone ring (0.9% of the dose).
Other unidentified components accounted only for 0.6% of the dose.
No enantiomeric interconversion was evidenced in vivo for neither levetiracetam or its primary metabolite.
In vitro
, levetiracetam and its primary metabolite have been shown not to inhibit the major human liver cytochrome P450 isoforms (CYP3A4, 2A6, 2C9, 2C19, 2D6, 2E1 and 1A2), glucuronyl transferase (UGT1A1 and UGT1A6) and epoxide hydroxylase activities. In addition, levetiracetam does not affect the in vitro glucuronidation of valproic acid.
In human hepatocytes in culture, levetiracetam had little or no effect on CYP1A2, SULT1E1 or UGT1A1. Levetiracetam caused mild induction of CYP2B6 and CYP3A4. The in vitro data and in vivo interaction data on oral contraceptives, digoxin and warfarin indicate that no significant enzyme induction is expected in vivo. Therefore, the interaction of levetiracetam with other substances, or vice versa, is unlikely.
Elimination: The plasma half-life in adults was 7±1 hours and did not vary either with dose, route of administration or repeated administration. The mean total body clearance was 0.96 mL/min/kg.
The major route of excretion was via urine, accounting for a mean 95% of the dose (approximately 93% of the dose was excreted within 48 hours). Excretion via faeces accounted for only 0.3% of the dose.
The cumulative urinary excretion of levetiracetam and its primary metabolite accounted for 66% and 24% of the dose, respectively during the first 48 hours.
The renal clearance of levetiracetam and ucb L057 is 0.6 and 4.2 mL/min/kg respectively indicating that levetiracetam is excreted by glomerular filtration with subsequent tubular reabsorption and that the primary metabolite is also excreted by active tubular secretion in addition to glomerular filtration. Levetiracetam elimination is correlated to creatinine clearance.
Special patient populations: Children (6 to 12 years): Following single dose administration (20 mg/kg) to epileptic children, the half-life of levetiracetam was about 6.0 hours. The apparent body weight adjusted clearance was approximately 30% higher than in the epileptic adults.
Elderly: In the elderly, the half-life is increased by about 40% (10 to 11 hours). This is related to the decrease in renal function in this population.
Renal Impairment: The apparent body clearance of both levetiracetam and of its primary metabolite is correlated to the creatinine clearance. It is therefore, recommended to adjust the maintenance daily dose of levetiracetam, based on creatinine clearance in patients with moderate and severe renal impairment.
In anuric end-stage renal disease adult subjects, the half-life was approximately 25 and 3.1 hours during interdialytic and intradialytic periods, respectively.
The fractional removal of levetiracetam was 51% during a typical 4-hour dialysis session.
Hepatic Impairment:
In subjects with mild and moderate hepatic impairment, there was no relevant modification of the clearance of levetiracetam. In most subjects with severe hepatic impairment, the clearance of levetiracetam was reduced by more than 50% due to a concomitant renal impairment.
Toxicology: Non-Clinical Information: Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, genotoxicity and carcinogenicity.
Adverse effects not observed in clinical studies but seen in the rat and to a lesser extent in the mouse at exposure levels similar to human exposure levels and with possible relevance for clinical use were liver changes, indicating an adaptive response such as increased weight and centrilobular hypertrophy, fatty infiltration and increased liver enzymes in plasma.
No adverse effects on male or female fertility or reproduction performance were observed in rats at doses up to 1,800 mg/kg/day (x 6 the MRHD on a mg/m2 or exposure basis) in parents and F1 generation.
Two embryo-foetal development (EFD) studies were performed in rats at 400, 1,200 and 3,600 mg/kg/day. At 3,600 mg/kg/day, in only one of the 2 EFD studies, there was a slight decrease in foetal weight associated with a marginal increase in skeletal variations/minor anomalies. There was no effect on embryo mortality and no increased incidence of malformations. The NOAEL (No Observed Adverse Effect Level) was 3,600 mg/kg/day for pregnant female rats (x 12 the MRHD on a mg/m2 basis) and 1,200 mg/kg/day for foetuses.
Four embryo-foetal development studies were performed in rabbits covering doses of 200, 600, 800, 1,200 and 1,800 mg/kg/day. The dose level of 1,800 mg/kg/day induced a marked maternal toxicity and a decrease in foetal weight associated with increased incidence of foetuses with cardiovascular/skeletal anomalies. The NOAEL was <200 mg/kg/day for the dams and 200 mg/kg/day for the foetuses (equal to the MRHD on a mg/m2 basis).
A peri- and post-natal development study was performed in rats with levetiracetam doses of 70, 350 and 1,800 mg/kg/day. The NOAEL was ≥1,800 mg/kg/day for the F0 females, and for the survival, growth and development of the F1 offspring up to weaning (x 6 the MRHD on a mg/m2 basis).
Neonatal and juvenile animal studies in rats and dogs demonstrated that there were no adverse effects seen in any of the standard developmental or maturation endpoints at doses up to 1,800 mg/kg/day (x 6-17 the MRHD on a mg/m2 basis).
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in