Eurovastin

Eurovastin Mechanism of Action

rosuvastatin

Manufacturer:

Eurodrug

Distributor:

Apex Pharma Marketing
Full Prescribing Info
Action
Pharmacotherapeutic Group: HMG-CoA reductase inhibitors. ATC Code: C10AA07.
Pharmacology: Pharmacodynamics: Mechanism of action: Rosuvastatin is a selective and competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme that converts 3-hydroxy-3-methylglutaryl coenzyme A to mevalonate, a precursor for cholesterol. The primary site of action of rosuvastatin is the liver, the target organ for cholesterol lowering.
Rosuvastatin increases the number of hepatic LDL receptors on the cell-surface, enhancing uptake and catabolism of LDL and it inhibits the hepatic synthesis of VLDL, thereby reducing the total number of VLDL and LDL particles.
Pharmacodynamic effects: Rosuvastatin reduces elevated LDL-cholesterol, total cholesterol and triglycerides and increases HDL-cholesterol. It also lowers ApoB, nonHDL-C, VLDL-C, VLDL-TG and increases ApoA-I. Rosuvastatin also lowers the LDL-C/HDL-C, total C/HDL-C and nonHDL-C/HDL-C and the ApoB/ApoA-I ratios.
Clinical efficacy: Rosuvastatin reduces elevated LDL-cholesterol, total cholesterol and triglycerides and increases HDL-cholesterol. It also lowers ApoB, nonHDL-C, VLDL-C, VLDL-TG and increases ApoA-I (see Table 1).
Rosuvastatin also lowers the LDL-C/HDL-C, total C/HDL-C, nonHDL-C/HDL-C and ApoB/ApoA-I ratio's.
A therapeutic response to Rosuvastatin is obtained within 1 week of commencing therapy and 90% of maximum response is usually achieved in 2 weeks. The maximum response is usually achieved by 4 weeks and is maintained after that. (See Table 1.)

Click on icon to see table/diagram/image

The data in Table 1 are confirmed by the broader clinical programme of over 3,500 patients given Rosuvstatin.
In a study of patients with heterozygous familial hypercholesterolaemia, 435 subjects were given Rosuvastatin from 20 mg to 80 mg in a force-titration design. All doses of Rosuvastatin showed a beneficial effect on lipid parameters and treatment to target goals. Following titration to 40 mg (12 weeks of treatment) LDL-C was reduced by 53%.
In a force-titration open label study, 42 patients with homozygous familial hypercholesterolaemia were evaluated for their response to Rosuvastatin 20-40 mg titrated at a 6 week interval. In the overall population, the mean LDL-C reduction was 22%. In the 27 patients with at least a 15% reduction by week 12 (considered to be the responder population), the mean LDL-C reduction was 26% at the 20 mg dose and 30% at the 40 mg dose. Of the 13 patients with an LDL-C of less than 15%, 3 had no response or an increase in LDL-C.
In the METEOR study, the effect of Rosuvastatin 40 mg on the progression of atherosclerosis was assessed by B-mode ultrasound of the carotid arteries. In this multi-center, double blind, placebo-controlled clinical trial, 984 subjects at low risk for coronary heart disease (defined as Framingham risk < 10% over ten years) and with a mean LDL-C of 154.5 mg/dL but with subclinical atherosclerosis as detected by CIMT (Carotid Intima Media Thickness) were randomized in a 5:2 ratio to treatment with either Rosuvastatin 40 mg or placebo for 2 years.
Rosuvastatin significantly slowed the progression of carotid atherosclerosis compared to placebo. The difference in the rate of change in the maximum CIMT of all 12 carotid artery sites between Rosuvastatin-treated patients and placebo-treated patients was -0.0145 mm/year (95% CI -0.0196, -0.0093; p<0.0001). The change from baseline for the Rosuvastatin group was -0.0014 mm/year (95% CI -0.0041, 0.0014), but was not significantly different from zero (p=0.3224). The beneficial effects of Rosuvastatin were consistent across all 4 secondary CIMT endpoints. There was significant progression in the placebo group (+0.0131 mm/year; 95% CI 0.0087, 0.0174; p<0.0001). In the Rosuvastatin group, 52.1% of patients demonstrated an absence of disease progression (i.e. regressed) compared to 37.7% of patients in the placebo group (p=0.0002). Rosuvastatin 40 mg was well-tolerated and the data were consistent to the established safety profile for Rosuvastatin.
In a randomized, multicenter, double-blind crossover study, 32 patients (27 with ε2/ε2 genotype and 4 with apo E mutation [Arg145Cys]) with dysbetalipoproteinaemia (Fredrickson type III) received rosuvastatin 10 or 20 mg daily for 6 weeks. Rosuvastatin reduced non-HDL-C (primary end point) and circulating remnant lipoprotein levels. Results are shown in the table as follows. (See Table 2.)

Click on icon to see table/diagram/image

Rosuvastatin is effective in adults with hypercholesterolaemia, with and without hypertriglyceridaemia, regardless of race, sex or age and in special populations such as diabetics or patients with familial hypercholesterolaemia.
In the Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) study, the effect of Rosuvastatin (rosuvastatin calcium) on the occurrence of major cardiovascular (CV) disease events was assessed in 17,802 men (≥ 50 years) and women (≥ 60 years) who had no clinically evident cardiovascular disease, LDL-C levels < 130 mg/dL (3.3 mmol/l) and hs-CRP levels ≥ 2 mg/L. The study population had an estimated baseline coronary heart disease risk of 11.6% over 10 years based on the Framingham risk criteria and included a high percentage of patients with additional risk factors such as hypertension (58%), low HDL-C levels (23%), cigarette smoking (16%) or a family history of premature CHD (12%). Study participants had a median baseline LDL-C of 108 mg/dL and hsCRP of 4.3 mg/L. Study participants were randomly assigned to placebo (n=8901) or rosuvastatin 20 mg once daily (n=8901) and were followed for a mean duration of 2 years. The JUPITER study was stopped early by the Data Safety Monitoring Board due to meeting predefined stopping rules for efficacy in rosuvastatin-treated subjects.
The primary endpoint was a composite end point consisting of the time-to-first occurrence of any of the following major CV events: CV death, nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina or an arterial revascularization procedure.
Rosuvastatin significantly reduced the risk of major CV events (252 events in the placebo group vs. 142 events in the rosuvastatin group) with a statistically significant (p<0.001) relative risk reduction of 44% and absolute risk reduction of 1.2% (see Figure 1). The risk reduction for the primary end point was consistent across the following predefined subgroups: age, sex, race, smoking status, family history of premature CHD, body mass index, LDL-C, HDL-C or hsCRP levels. (See Figure 1.)

Click on icon to see table/diagram/image

The individual components of the primary end point are presented in Figure 2. Rosuvastatin significantly reduced the risk of nonfatal myocardial infarction, nonfatal stroke, and arterial revascularization procedures. There were no significant treatment differences between the rosuvastatin and placebo groups for death due to cardiovascular causes or hospitalizations for unstable angina.
Rosuvastatin significantly reduced the risk of myocardial infarction (6 fatal events and 62 nonfatal events in placebo-treated subjects vs. 9 fatal events and 22 nonfatal events in rosuvastatin-treated subjects) and the risk of stroke (6 fatal events and 58 nonfatal events in placebo-treated subjects vs. 3 fatal events and 30 nonfatal events in rosuvastatin-treated subjects).
In JUPITER, there was a statistically significant increase in the frequency of diabetes mellitus reported by investigators; 2.8% of patients in the rosuvastatin group and 2.3% of patients in the placebo group (HR: 1.27, 95% CI: 1.05-1.53, p=0.015). The difference between treatment groups (rosuvastatin versus placebo) in mean HbA1c change from baseline was approximately 0.1%. The cardiovascular and mortality benefits of rosuvastatin therapy exceeded the diabetes hazard in the trial population as a whole (see Precautions and Adverse Reactions).
In a post-hoc subgroup analysis of JUPITER subjects (n=1405; rosuvastatin=725, placebo=680) with a hsCRP ≥ 2 mg/L and no other traditional risk factors (smoking, BP ≥ 140/90 or taking antihypertensives, low HDL-C) other than age, after adjustment for high HDL-C, there was no significant treatment benefit with rosuvastatin treatment. (See Figure 2.)

Click on icon to see table/diagram/image

At one year, rosuvastatin increased HDL-C and reduced LDL-C, hsCRP, total cholesterol and serum triglyceride levels (p<0.001 for all versus placebo).
Children and Adolescents with Hypercholesterolaemia: In a double blind, randomized, multi-centre, placebo-controlled, 12-week study (n=176, 97 male and 79 female) followed by a 40-week (n=173, 96 male and 77 female), open label, rosuvastatin dose titration phase, 10-17 years of age (Tanner stage II-V, females at least 1 year post- menarche) with heterozygous familial hypercholesterolaemia received rosuvastatin 5, 10 or 20 mg or placebo daily for 12 weeks and then all received rosuvastatin daily for 40 weeks. At study entry, approximately 30% of the patients were 10-13 years and approximately 17%, 18%, 40%, and 25% were Tanner stage II, III, IV, and V respectively.
Rosuvastatin reduced LDL-C (primary end point), total cholesterol and ApoB levels. Results are shown in Table 3 as follows. (See Table 3.)

Click on icon to see table/diagram/image

At the end of the 40 week, open label, titration to goal, dosing up to a maximum of 20 mg once daily, 70 of 173 patients (40.5%) had achieved the LDL-C goal of less than 110 mg/dL (2.8 mmol/L).
After 52 weeks' of study treatment, no effect on growth or sexual maturation was detected (see Precautions).
Pharmacokinetics: Absorption: Maximum rosuvastatin plasma concentrations are achieved approximately 5 hours after oral administration. The absolute bioavailability is approximately 20%.
Distribution: Rosuvastatin is taken up extensively by the liver which is the primary site of cholesterol synthesis and LDL-C clearance. The volume of distribution of rosuvastatin is approximately 134 L. Approximately 90% of rosuvastatin is bound to plasma proteins, mainly to albumin.
Biotransformation: Rosuvastatin undergoes limited metabolism (approximately 10%). In vitro metabolism studies using human hepatocytes indicate that rosuvastatin is a poor substrate for cytochrome P450-based metabolism. CYP2C9 was the principal isoenzyme involved, with 2C19, 3A4 and 2D6 involved to a lesser extent. The main metabolites identified are the N-desmethyl and lactone metabolites. The N-desmethyl metabolite is approximately 50% less active than rosuvastatin whereas the lactone form is considered clinically inactive. Rosuvastatin accounts for greater than 90% of the circulating HMG-CoA reductase inhibitor activity.
Elimination: Approximately 90% of the rosuvastatin dose is excreted unchanged in the faeces (consisting of absorbed and non-absorbed active substance) and the remaining part is excreted in urine. Approximately 5% is excreted unchanged in urine. The plasma elimination half-life is approximately 19 hours. The elimination half-life does not increase at higher doses. The geometric mean plasma clearance is approximately 50 litres/hour (coefficient of variation 21.7%). As with other HMG-CoA reductase inhibitors, the hepatic uptake of rosuvastatin involves the membrane transporter OATP-C. This transporter is important in the hepatic elimination of rosuvastatin.
Linearity: Systemic exposure of rosuvastatin increases in proportion to dose. There are no changes in pharmacokinetic parameters following multiple daily doses.
Special populations: Age and sex: There was no clinically relevant effect of age or sex on the pharmacokinetics of rosuvastatin. The pharmacokinetics of rosuvastatin in children and adolescents with heterozygous familial hypercholesterolaemia was similar to that of adult volunteers.
Race: Pharmacokinetic studies show an approximate 2-fold elevation in median AUC and Cmax in Asian subjects (Japanese, Chinese, Filipino, Vietnamese and Koreans) compared with Caucasians; Asian-Indians show an approximate 1.3-fold elevation in median AUC and Cmax. A population pharmacokinetic analysis revealed no clinically relevant differences in pharmacokinetics between Caucasian and Black groups.
Genetic polymorphisms: Disposition of HMG-CoA reductase inhibitors, including rosuvastatin, involves OATP1B1 and BCRP transporter proteins. In patients with SLCO1B1 (OATP1B1) and/or ABCG2 (BCRP) genetic polymorphisms there is a risk of increased rosuvastatin exposure. Individual polymorphisms of SLCO1B1 c.521CC and ABCG2 c.421AA are associated with an approximate 1.6-fold higher rosuvastatin exposure (AUC) or 2.4-fold higher exposure, respectively, compared to the SLCO1B1 c.521TT or ABCG2 c.421CC genotypes.
Renal insufficiency: In a study in subjects with varying degrees of renal impairment, mild to moderate renal disease had no influence on plasma concentration of rosuvastatin or the N-desmethyl metabolite. Subjects with severe impairment (creatinine clearance <30 ml/min) had a 3-fold increase in plasma concentration and a 9-fold increase in the N-desmethyl metabolite concentration compared to healthy volunteers. Steady-state plasma concentrations of rosuvastatin in subjects undergoing haemodialysis were approximately 50% greater compared to healthy volunteers.
Hepatic insufficiency: In a study with subjects with varying degrees of hepatic impairment there was no evidence of increased exposure to rosuvastatin in subjects with Child-Pugh scores of 7 or below. However, two subjects with Child-Pugh scores of 8 and 9 showed an increase in systemic exposure of at least 2-fold compared to subjects with lower Child-Pugh scores. There is no experience in subjects with Child-Pugh scores above 9.
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $139 a year.
Already a member? Sign in
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $139 a year.
Already a member? Sign in