Nivestim

Nivestim Mechanism of Action

filgrastim

Manufacturer:

Pfizer

Distributor:

Zuellig Pharma
Full Prescribing Info
Action
Pharmacotherapeutic group: Cytokines. ATC Code: L03AA02.
Pharmacology: Pharmacodynamics: Nivestim is a biosimilar medicinal product.
Human G-CSF is a glycoprotein which regulates the production and release of functional neutrophils from the bone marrow. Nivestim containing r-metHuG-CSF (filgrastim) causes marked increases in peripheral blood neutrophil counts within twenty-four hours, with minor increases in monocytes. In some SCN patients filgrastim can also induce a minor increase in the number of circulating eosinophils and basophils relative to baseline; some of these patients may present with eosinophilia or basophilia already prior to treatment. Elevations of neutrophil counts are dose-dependent at recommended doses. Neutrophils produced in response to filgrastim show normal or enhanced function as demonstrated by tests of chemotactic and phagocytic function. Following termination of filgrastim therapy, circulating neutrophil counts decrease by 50% within 1 to 2 days, and to normal levels within 1 to 7 days.
Use of filgrastim in patients undergoing cytotoxic chemotherapy leads to significant reductions in the incidence, severity and duration of neutropenia and febrile neutropenia. Treatment with filgrastim significantly reduces the duration of febrile neutropenia, antibiotic use and hospitalisation after induction chemotherapy for acute myelogenous leukaemia or myeloablative therapy followed by bone marrow transplantation. The incidence of fever and documented infections were not reduced in either setting. The duration of fever was not reduced in patients undergoing myeloablative therapy followed by bone marrow transplantation.
Use of filgrastim, either alone, or after chemotherapy, mobilises haematopoietic progenitor cells into peripheral blood. These autologous PBPCs may be harvested and infused after high-dose cytotoxic therapy, either in place of, or in addition to bone marrow transplantation. Infusion of PBPC accelerates haematopoietic recovery reducing the duration of risk for haemorrhagic complications and the need for platelet transfusions.
Recipients of allogeneic peripheral blood progenitor cells mobilised with filgrastim experienced significantly more rapid haematological recovery, leading to a significant decrease in time to unsupported platelet recovery when compared with allogeneic bone marrow transplantation.
One retrospective European study evaluating the use of GCSF after allogeneic bone marrow transplantation in patients with acute leukaemias suggested an increase in the risk of GvHD, treatment related mortality (TRM) and mortality when GCSF was administered. In a separate retrospective International study in patients with acute and chronic myelogenous leukaemias, no effect on the risk of GvHD, TRM and mortality was seen. A meta-analysis of allogeneic transplant studies, including the results of nine prospective randomized trials, 8 retrospective studies and 1 case-controlled study, did not detect an effect on the risks of acute GvHD, chronic GvHD or early treatment-related mortality. (See Table 1.)

Click on icon to see table/diagram/image

Use of filgrastim for the mobilisation of PBPCs in normal donors prior to allogeneic PBPC transplantation: In normal donors, a 10 μg/kg/day dose administered subcutaneously for 4 to 5 consecutive days allows a collection of ≥4 x 106 CD34+ cells/kg recipient body weight in the majority of the donors after two leukapheresis.
Use of filgrastim in patients, children or adults, with SCN (severe congenital, cyclic, and idiopathic neutropenia) induces a sustained increase in absolute neutrophil counts in peripheral blood and a reduction of infection and related events.
Use of filgrastim in patients with HIV infection maintains normal neutrophil counts to allow scheduled dosing of antiviral and/or other myelosuppressive medication. There is no evidence that patients with HIV infection treated with filgrastim show an increase in HIV replication.
As with other haematopoietic growth factors, G-CSF has shown in vitro stimulating properties on human endothelial cells.
Pharmacokinetics: A randomised, open-label, single-dose, comparator-controlled, two-way crossover study in 46 healthy volunteers showed that the pharmacokinetic profile of Nivestim was comparable to that of the reference product after subcutaneous and intravenous administration. Another randomised, double-blind, multiple-dose, comparator-controlled, two-way crossover study in 50 healthy volunteers showed that the pharmacokinetic profile of Nivestim was comparable to that of the reference product after subcutaneous administration.
Clearance of filgrastim has been shown to follow first-order pharmacokinetics after both subcutaneous and intravenous administration. The serum elimination half-life of filgrastim is approximately 3.5 hours, with a clearance rate of approximately 0.6 ml/min/kg. Continuous infusion with filgrastim over a period of up to 28 days, in patients recovering from autologous bone-marrow transplantation, resulted in no evidence of drug accumulation and comparable elimination half-lives. There is a positive linear correlation between the dose and the serum concentration of filgrastim, whether administered intravenously or subcutaneously. Following subcutaneous administration of recommended doses, serum concentrations were maintained above 10 ng/ml for 8 to 16 hours. The volume of distribution in blood is approximately 150 ml/kg.
Toxicology: Preclinical safety data: Filgrastim was studied in repeated dose toxicity studies up to 1 year in duration which revealed changes attributable to the expected pharmacological actions including increases in leucocytes, myeloid hyperplasia in bone marrow, extramedullary granulopoiesis and splenic enlargement. These changes all reversed after discontinuation of treatment.
Effects of filgrastim on prenatal development have been studied in rats and rabbits. Intravenous (80 μg/kg/day) administration of filgrastim to rabbits during the period of organogenesis was maternally toxic and increased spontaneous abortion, post-implantation loss, and decreased mean live litter size and foetal weight were observed.
Based on reported data for another filgrastim product similar to the originator, comparable findings plus increased foetal malformations were observed at 100 μg/kg/day, a maternally toxic dose which corresponded to a systemic exposure of approximately 50-90 times the exposures observed in patients treated with the clinical dose of 5 μg/kg/day. The no observed adverse effect level for embryo-foetal toxicity in this study was 10 μg/kg/day, which corresponded to a systemic exposure of approximately 3-5 times the exposures observed in patients treated with the clinical dose.
In pregnant rats, no maternal or foetal toxicity was observed at doses up to 575 μg/kg/day. Offspring of rats administered filgrastim during the peri-natal and lactation periods, exhibited a delay in external differentiation and growth retardation (≥20 μg/kg/day) and slightly reduced survival rate (100 μg/kg/day).
Filgrastim had no observed effect on the fertility of male or female rats.
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in