Wonder

Wonder Mechanism of Action

dapoxetine

Manufacturer:

Kusum

Distributor:

JDS
Full Prescribing Info
Action
Pharmacotherapeutic group: Other Urologicals. ATC code: G04BX14.
Pharmacology: Pharmacodynamics: Wonder contains Dapoxetine which is a potent selective serotonin reuptake inhibitor (SSRI) with an IC50 of 1.12 nM, while its major human metabolites, desmethyldapoxetine (IC50 < 1.0 nM) and didesmethyldapoxetine (IC50 = 2.0 nM) are equivalent or less potent (Dapoxetine-N-oxide (IC50 = 282 nM)).
Human ejaculation is primarily mediated by the sympathetic nervous system. The ejaculatory pathway originates from a spinal reflex centre, mediated by the brain stem, which is influenced initially by a number of nuclei in the brain (medial preoptic and paraventricular nuclei).
The mechanism of action of Dapoxetine in premature ejaculation is presumed to be linked to the inhibition of neuronal reuptake of serotonin and the subsequent potentiation of the neurotransmitter's action at pre and postsynaptic receptors.
Pharmacokinetics: Absorption: Dapoxetine is rapidly absorbed with maximum plasma concentrations (Cmax) occurring approximately 1-2 hours after tablet intake. The absolute bioavailability is 42% (range 15-76%), and dose proportional increases in exposure (AUC and Cmax) are observed between the 30 and 60 mg dose strengths. Following multiple doses, AUC values for both Dapoxetine and the active metabolite desmethyldapoxetine (DED) increase by approximately 50% when compared to single dose AUC values.
Ingestion of a high fat meal modestly reduced the Cmax (by 10%) and modestly increased the AUC (by 12%) of Dapoxetine and slightly delayed the time for Dapoxetine to reach peak concentrations. These changes are not clinically significant. Dapoxetine can be taken with or without food.
Distribution: More than 99% of dapoxetine is bound in vitro to human serum proteins. The active metabolite desmethyldapoxetine (DED) is 98.5% protein bound. Dapoxetine has a mean steady state volume of distribution of 162 L.
Metabolism: In vitro studies suggest that dapoxetine is cleared by multiple enzyme systems in the liver and kidneys, primarily CYP2D6, CYP3A4, and flavin monooxygenase (FMO1). Following oral dosing of 14C-Dapoxetine, Dapoxetine was extensively metabolized to multiple metabolites primarily through the following biotransformational pathways: N-oxidation, N-demethylation, naphthyl hydroxylation, glucuronidation and sulfation. There was evidence of presystemic first-pass metabolism after oral administration.
Intact Dapoxetine and Dapoxetine-N-oxide were the major circulating moieties in the plasma. In vitro binding and transporter studies show that Dapoxetine-N-oxide is inactive. Additional metabolites including desmethyldapoxetine and didesmethyldapoxetine account for less than 3% of the total circulating drug-related materials in plasma. In vitro binding studies indicate that DED is equipotent to Dapoxetine and didesmethyldapoxetine has approximately 50% of the potency of Dapoxetine. The unbound exposures (AUC and Cmax) of DED are approximately 50% and 23%, respectively, of the unbound exposure of Dapoxetine.
Elimination: The metabolites of Dapoxetine were primarily eliminated in the urine as conjugates. Unchanged active substance was not detected in the urine. Following oral administration, Dapoxetine has an initial (disposition) half-life of approximately 1.5 hours, with plasma levels less than 5% of peak concentrations by 24 hours post-dose, and a terminal half-life of approximately 19 hours. The terminal half-life of DED is approximately 19 hours.
Pharmacokinetics in special populations: The metabolite DED contributes to the pharmacological effect of Wonder, particularly when the exposure of DED is increased. As follows, in some populations, the increase in active fraction parameters is presented. This is the sum of the unbound exposure of dapoxetine and DED. DED is equipotent to dapoxetine. The estimation assumes equal distribution of DED to the CNS but it is unknown whether this is the case.
Race: Analyses of single dose clinical pharmacology studies using 60 mg dapoxetine indicated no statistically significant differences between Caucasians, Blacks, Hispanics and Asians. A clinical study conducted to compare the pharmacokinetics of dapoxetine in Japanese and Caucasian subjects showed 10% to 20% higher plasma levels (AUC and peak concentration) of dapoxetine in Japanese subjects due to lower body weight. The slightly higher exposure is not expected to have a meaningful clinical effect.
Elderly (age 65 years and over): Analyses of a single dose clinical pharmacology study using 60 mg dapoxetine showed no significant differences in pharmacokinetic parameters (Cmax, AUCinf, Tmax) between healthy elderly males and healthy young adult males. The efficacy and safety has not been established in this population (see Dosage & Administration).
Renal impairment: A single-dose clinical pharmacology study using a 60 mg dapoxetine dose was conducted in subjects with mild (CrCL 50 to 80 mL/min), moderate (CrCL 30 to < 50 mL/min), and severe renal impairment (CrCL < 30 mL/min) and in subjects with normal renal function (CrCL > 80 mL/min). No clear trend for an increase in dapoxetine AUC with decreasing renal function was observed. AUC in subjects with severe renal impairment was approximately 2-fold that of subjects with normal renal function, although there are limited data in patients with severe renal impairment. Dapoxetine pharmacokinetics have not been evaluated in patients requiring renal dialysis (see Dosage & Administration and Precautions).
Hepatic impairment: In patients with mild hepatic impairment, unbound Cmax of dapoxetine is decreased by 28% and unbound AUC is unchanged. The unbound Cmax and AUC of the active fraction (the sum of the unbound exposure of dapoxetine and desmethyldapoxetine) were decreased by 30% and 5%, respectively. In patients with moderate hepatic impairment, unbound Cmax of dapoxetine is essentially unchanged (decrease of 3%) and unbound AUC is increased by 66%. The unbound Cmax and AUC of the active fraction were essentially unchanged and doubled, respectively.
In patients with severe hepatic impairment, the unbound Cmax of dapoxetine was decreased by 42% but the unbound AUC was increased by approximately 223%. The Cmax and AUC of the active fraction had similar changes (see Dosage & Administration and Contraindications).
CYP2D6 Polymorphism: In a single dose clinical pharmacology study using 60 mg dapoxetine, plasma concentrations in poor metabolizers of CYP2D6 were higher than in extensive metabolizers of CYP2D6 (approximately 31% higher for Cmax and 36% higher for AUCinf of dapoxetine and 98% higher for Cmax and 161% higher for AUCinf of desmethyldapoxetine). The active fraction of Wonder may be increased by approximately 46% at Cmax and by approximately 90% at AUC. This increase may result in a higher incidence and severity of dose dependent adverse events (see Dosage & Administration). The safety of Wonder in poor metabolizers of CYP2D6 is of particular concern with concomitant administration of other medicinal products that may inhibit the metabolism of dapoxetine such as moderate and potent CYP3A4 inhibitors (see Dosage & Administration and Contraindications).
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in
Register or sign in to continue
Asia's one-stop resource for medical news, clinical reference and education
Already a member? Sign in